2023 MID-ATLANTIC CONFERENCE 11th ANNUAL CURRENT CONCEPTS IN VASCULAR THERAPIES

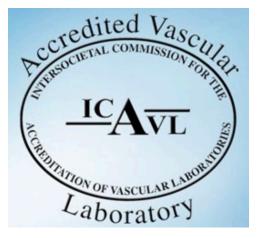
Hilton Virginia Beach Oceanfront Virginia Beach, Virginia

2023 MID-ATLANTIC CONFERENCE 11th ANNUAL CURRENT CONCEPTS IN VASCULAR THERAPIES

Is PVL an order or a location? Introduction to Vascular Imaging

Michael E Landis, MD FACS

Sentara Peripheral Vascular Lab



"Get a PVL"

- Sentara Dedicated Vascular Service Line
 - technologists/varying levels of competency
 - 19 Physical Locations
 - Offer interventional/surgical/trauma services
- Same protocols, same equipment and reporting software at all sites.
- Peripheral Vascular Lab a place not a test

ICAVL/IAC certification

- Internally validated diagnostic criteria with retrievable records
- Recertification every three years.
- Requires information on technician/medical director training, procedural volumes, equipment information and CME

EPIC VASCULAR ORDERS

Name	Name	Name	
PVL DIALYSIS ACCESS SCAN LE RIGHT	PVL INTRAOP UE ART DUPLEX UNI/LTD	PVL TEMPORAL ARTERY BILATERAL	PVL VENOUS EXAM LE BILATERAL R/O DVT
PVL DIALYSIS ACCESS SCAN UE LEFT	PVL INTRAOP VISCERAL DUPLEX	PVL TEMPORAL ARTERY LEFT	PVL VENOUS EXAM LE LEFT R/O DVT
PVL DIALYSIS ACCESS SCAN UE RIGHT	PVL IVC (INCLUDES IVC/ILIAC VEINS)	PVL TEMPORAL ARTERY RIGHT	PVL VENOUS EXAM LE RIGHT R/O DVT
PVL DIALYSIS ACCESS STEAL STUDY LEFT UE	PVL IVC FILTER PLACEMENT	PVL THORACIC OUTLET DUPLEX BILATER	PVL VENOUS EXAM UE BILATERAL R/O DVT
PVL DIALYSIS ACCESS STEAL STUDY RIGHT UE	PVL LIVER TRANSPLANT	PVL THORACIC OUTLET DUPLEX LEFT	PVL VENOUS EXAM UE LEFT R/O DVT
PVL DIGITAL PRESSURES (FINGERS)	PVL MANUAL OCCLUSION OF PSEUDOAN	PVL THORACIC OUTLET DUPLEX RIGHT	PVL VENOUS EXAM UE RIGHT R/O DVT
PVL DIGITAL PRESSURES (TOES)	PVL MESENTERIC SCAN	PVL THROMBIN INJECTION OF PSEUDO/	PVL VENOUS INSUFFICIENCY LE BILATERAL
PVL EPIGASTRIC ARTERY DUPLEX	PVL ORDERSET 981	PVL TIPS	PVL VENOUS INSUFFICIENCY LE LEFT
PVL GRAFT DUPLEX LE BILAT	PVL PANCREATIC TRANSPLANT	PVL TRANSCRANIAL DUPLEX COMPLETE	
PVL GRAFT DUPLEX LE LEFT	PVL PENILE DUPLEX NO INJECTION	PVL TRANSCRANIAL DUPLEX LIMITED	PVL VENOUS INSUFFICIENCY LE RIGHT
PVL GRAFT DUPLEX LE RIGHT	PVL PENILE DUPLEX W/INJECTION	PVL TRAUMA SCAN LE BILAT	PVL IVC (INCLUDES IVC/ILIAC VEINS)
PVL GRAFT DUPLEX UE BILAT	PVL POPLITEAL ARTERY DUPLEX BILAT	PVL TRAUMA SCAN LE LEFT	ED PVL VENOUS EXAM LE BILATERAL
PVL GRAFT DUPLEX UE LEFT	PVL POPLITEAL ARTERY DUPLEX LEFT	PVL TRAUMA SCAN LE RIGHT	ED PVL VENOUS EXAM LE LEFT
PVL GRAFT DUPLEX UE RIGHT	PVL POPLITEAL ARTERY DUPLEX RIGHT	PVL TRAUMA SCAN UE BILAT	ED PVL VENOUS EXAM LE RIGHT
PVL GROIN STUDY BILAT	PVL PORTABLE CHARGE VASCULAR LAB	PVL TRAUMA SCAN UE LEFT	
PVL GROIN STUDY LEFT	PVL PORTAL-HEPATIC	PVL TRAUMA SCAN UE RIGHT	
PVL GROIN STUDY RIGHT	PVL POST ABLATION DUPLEX SCAN BILATERA	PVL TYPE-IN	
PVL ILIAC ARTERY IMAGING BILAT	PVL POST ABLATION DUPLEX SCAN LEFT	PVL UNLISTED PROCEDURE	
PVL ILIAC ARTERY IMAGING LEFT	PVL POST ABLATION DUPLEX SCAN RIGHT	PVL VEIN MAP UE PRE OP DIALYSIS ACCESS BILAT	
PVL ILIAC ARTERY IMAGING RIGHT	PVL PV DIGITIZED IMAGES	PVL VEIN MAP UE PRE OP DIALYSIS ACCESS LT	
PVL INTERNAL MAMMARY ARTERY BILATERA	PVL RADIAL ARTERY (PREOP)/ALLEN TEST	PVL VEIN MAP UE PRE OP DIALYSIS ACCESS RT	
PVL INTERNAL MAMMARY ARTERY LEFT	PVL RADIAL ARTERY DUPLEX BILAT	PVL VEIN MAP UE REVASCULARIZATION BILAT	
PVL INTERNAL MAMMARY ARTERY RIGHT	PVL RADIAL ARTERY DUPLEX LEFT	PVL VEIN MAP UE REVASCULARIZATION LT	
PVL INTRA OP AORTA ILIAC DUPLEX	PVL RADIAL ARTERY DUPLEX RIGHT	PVL VEIN MAP UE REVASCULARIZATION RT	
PVL INTRAOP CAROTID DUPLEX	PVL RENAL ARTERY/VEIN BILATERAL	PVL VEIN MAPPING LE BILATERAL	
PVL INTRAOP GRAFT DUPLEX	PVL RENAL ARTERY/VEIN LEFT	PVL VEIN MAPPING LE BILATERAL FOR DEEP VEINS	
PVL INTRAOP LE ART DUPLEX BILAT	PVL RENAL ARTERY/VEIN RIGHT	PVL VEIN MAPPING LE LEFT	
PVL INTRAOP LE ART DUPLEX UNI/LTD	PVL RENAL TRANSPLANT	PVL VEIN MAPPING LE LEFT FOR DEEP VEINS	
PVL INTRAOP UE ART DUPLEX BILAT	PVL SCANNED IMAGE	PVL VEIN MAPPING LE RIGHT	

Sentara Vascular Laboratories

2022 PVL exam total= 87,792

LE Venous= 32,170 exams ER= 30% Inpatient= 32% Outpatient= 33%

Venous Insufficiency= 3551 exams

UE Venous= 4183 patients

Extracranial= 14,296 exams

LE arterial= 15,414 exams

Aorta/EVAR= 2718 exams

Renal= 2454 exams

Dialysis Access= 2058 exams

Types of Vascular Studies

Extra/Intracranial:

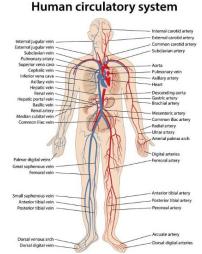
Carotids Transcranial (neuro)

Extremity Venous:

Upper, Lower r/o DVT Vein mapping Venous Insufficiency (NOT IP's)

Extremity Arterial Testing:

Physiologic Testing (rest or exercise) includes


ABI. DOPPLER

Duplex Ultrasound (imaging/no ABI)

* Includes groin, grafts, stents, mapping

Abdominal Testing:

Renals, Mesenteric, Portal, TIPS, Transplants IVC, Aorto-Iliac and EVAR

Advantages of Ultrasound

•Truly non-invasive

•Does not involve the use of ionizing radiation or contrast dye.

•Ideal in the setting of claustrophobia.

•No need for sedation or i.v. access.

•Capital equipment cost 1/10th that of CT or MR scanners.

•Study cost 1/10th of CT, MR or conventional angiography.

•The preferred imaging modality for assessing arteriovenous fistula, arterial bypass grafts, deep and superficial venous thrombus, and venous insufficiency.

CMS Guidelines

"The use of a simple handheld or other Doppler device that does not produce hard copy output, or that does not permit analysis of bi-directional vascular flow, is considered part of the physical examination of the vascular system and is not separately reimbursable."
Studies must be performed by, or under the direct supervision of, persons who have ... been credentialed in vascular technology, or performed in facilities with laboratories accredited in vascular technology.

•Technician credentials include ARMDS, RVT, and ARRT

•Laboratory accreditation includes ICAVL or SVR.

Reimbursement

•Impact of Medicare denials on noninvasive vascular diagnostic testing.

•...16.8% of 345 venous duplex ultrasound scans, and 11.1% of 343 lowerextremity arterial Doppler scans).

- an abnormal result was found in "32.8% of venous duplex ultrasound scans, and 78.9% of lower-extremity arterial Doppler scans."
- •Most claims were denied based on compliance documentation for medical necessity, and 88.1% were ultimately reimbursed following resubmission.

Vasc Surg. 2001 Nov;34(5):846-53. Passman MA1, Guzman RJ, Pierce R, Naslund

Indication for evaluation

•History of complaints consistent with arterial insufficiency; claudication or rest pain.

•Exam findings consistent with the presence of ischemia; ulceration, tissue loss, gangrene.

•Aneurysmal disease.

•Findings consistent with thromboembolism.

•Preoperative assessment prior to surgery with abnormal physical exam.

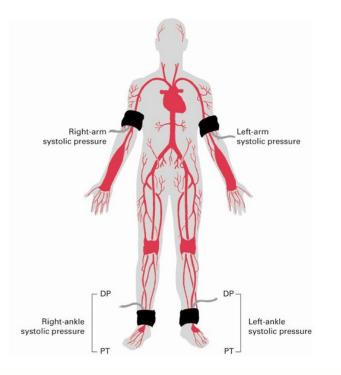
•Blunt or penetrating trauma

•Surveillance of known PVD, AVF/AVG or BPG.

Cost Analysis

<u>CTA</u>	Aorta Upper Extremity Lower Extremity	\$5,900 2,175 6,100
<u>MRA</u>	Abdomen (excl pelvis) Lower Extremity	\$4,700 6,700
Conventional angiography		
<u>Duplex</u>	Abdomen/Pelvis Lower extremity	\$5,800 4,000
	Extremity	\$410

Disadvantages of Ultrasound


•Anatomic constraints

•Provides only limited evaluation of soft tissue or bone when compared to CT or MR.

- •Imaging quality can be limited when assessing deeper structures or small vessels.
- •Comparative studies can be difficult to interpret.
- •Delay in availability after hours.
- •TECHNICIAN DEPENDENT

Ankle-Brachial Index: ABI

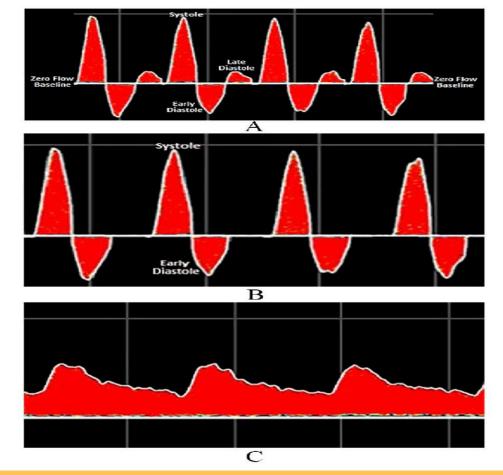
Ankle-Brachial Index: ABI

TABLE 1

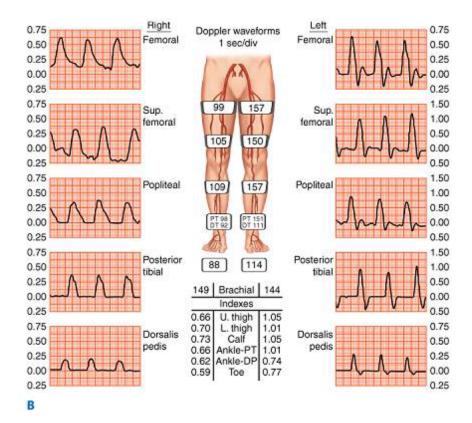
Diagnostic criteria for the resting ankle-brachial index

INTERPRETATION	
Normal	
Borderline Perform exercise ankle-brachial index testing if indicated	
Abnormal—peripheral artery disease	
Noncompressible vessels Obtain toe-brachial index to diagnose peripheral artery disease	

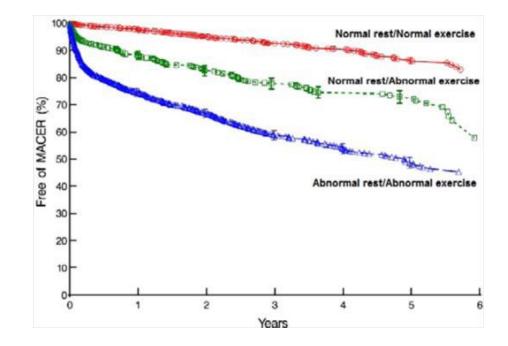
ADAPTED FROM 2011 WRITING GROUP MEMBERS; 2005 WRITING COMMITTEE MEMBERS; ACCF/ AHA TASK FORCE MEMBERS. 2011 ACCF/AHA FOCUSED UPDATE OF THE GUIDELINE FOR THE MANAGEMENT OF PATIENTS WITH PERIPHERAL ARTERY DISEASE (UPDATING THE 2005 GUIDE LINE): A REPORT OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION/AMERICAN HEART ASSOCIATION TASK FORCE ON PRACTICE GUIDELINES. CIRCULATION 2011; 124:2020–2045.


Digital pressures and the Toe-Brachial Index

Range >0.7 0.5-0.7 0.35-0.5 <0.35 and toe pressure 40 mmHg Moderate-Severe <0.35 and toe pressure < 30 mmHg


<u>Interpretation</u> Normal Mild Moderate

Severe



Exercise Testing

- •Useful adjunct in patients with claudication symptoms and normal resting ABI's.
- Can differentiate claudication from 'pseudoclaudication'
 Requires walking 2 mph at a 12° incline for 5 minutes, or performing 50 consecutive toe raises.
- •A drop in the SBP of > 20 mmHg indicates the presence of hemodynamically significant disease.

Exercise Testing

Duplex Ultrasound

•First described in the 1880's by the Curie brothers, who were able to produce electricity by mechanically vibrating a quartz crystal – the piezoelectric effect.

•In 1958 Brown developed a two dimensional scanner that allowed for visualization of tissue density.

•'Brightness mode' and 'Gray scale' modalities were developed over the next twenty years, leading to real time imaging capabilities

Duplex Ultrasound

•Consists of real time B mode/Gray scale imaging and color pulsed wave doppler ultrasound.

- •Provides both anatomic and functional assessment of the vessel.
- B-mode imaging allows for visual resolution of the arterial wall, and characterization of atherosclerotic plaque.
 Pulsed-wave color doppler measures flow velocities and blood flow patterns.

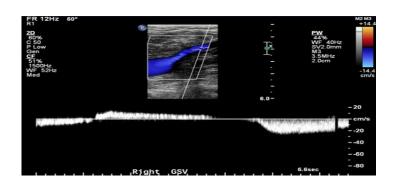
Technical limitations

Obesity in the United States

Technical limitations

Technical limitations

Raynaud's Syndrome



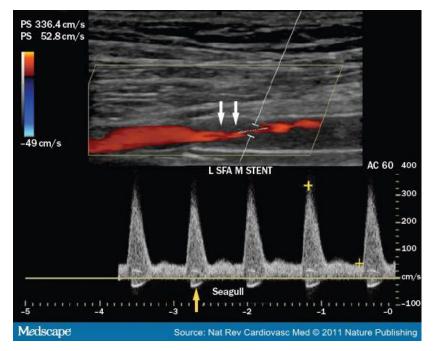
PVL Venous to R/O DVT

- Unilateral or Bilateral; all unilateral include contralateral CFV
- Common Femoral through named calf veins
- **DVT aging** (acute, chronic, age indeterminate)
- Assess for Proximal Venous Obstruction
- Reflux GSV SFJ, Deep veins
- DVT is what we evaluate for; it IS NOT the indicator for the exam unless there is KNOWN DVT. Examples of accepted indicators: SOB, PE, edema, pain or trauma.

Arterial graft surveillance

Duplex scan surveillance during the first year after infrainguinal autologous vein bypass grafting surgery: Costs and clinical outcomes compared with other surveillance programs.

... in patients treated for critical limb ischemia, duplex scan surveillance was the least expensive (\$2974) and resulted in the fewest major amputations (19 per 1000 patients).


Is duplex surveillance of value after leg vein bypass grafting? Principal results of the Vein Graft Surveillance Randomised Trial (VGST).

Intensive surveillance with duplex scanning did not show any additional benefit in terms of limb salvage rates for patients undergoing vein bypass graft operations, but it did incur additional costs.

Visser, et al, JVS 2001 Davies, et al, Circulation 2005

Bypass graft surveillance

Treatment of arterial pseudoaneurysms

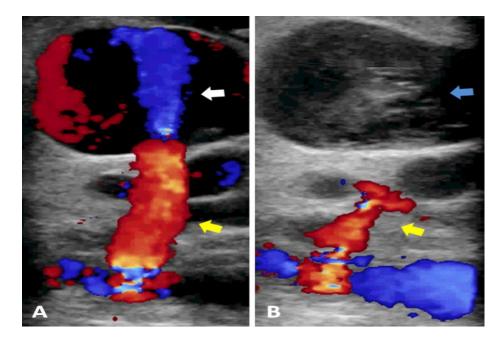
Duplex Directed Thrombin injection - DDTI

•240 patients with either a brachial or femoral artery pseudoaneurysm following percutaneous catheterization.

Lyophilized bovine thrombin reconstituted with sterile water to a concentration of 1000 IU per 1.0 ml. Injected in 0.1 ml aliquots under ultrasound guidance.
Average volume of 3 – 400 IU used per injection.

•Primary and secondary success rates of 95.8 and 99,6%, respectively.

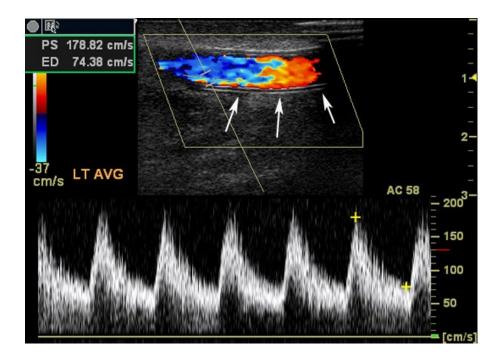
•No major complications reported.


•Most common complaints were of mild to moderate pain at the injection site, and low grade temperature.

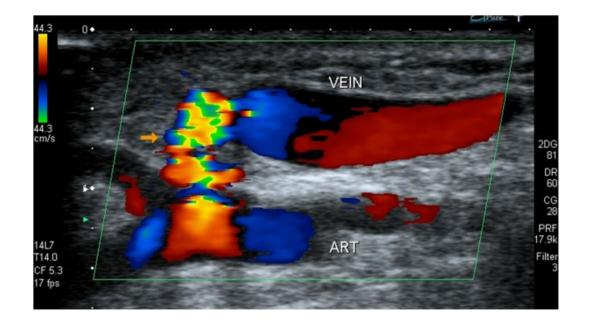
•No reported recurrences, though follow-up was short (21 days)

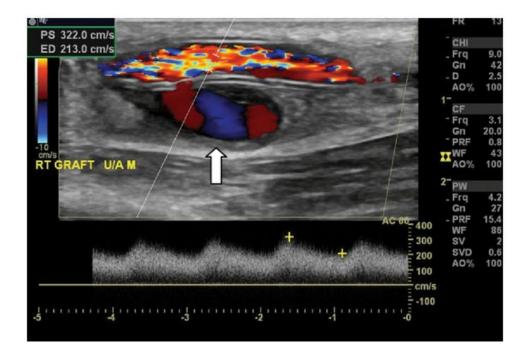
Krueger, et al JR, 2005

Treatment of arterial pseudoaneurysms


•Arterial and venous stenoses, graft thrombosis (occlusive and nonocclusive), infection, aneurysm and pseudoaneurysm formation, and arterial steal are relatively common abnormalities.

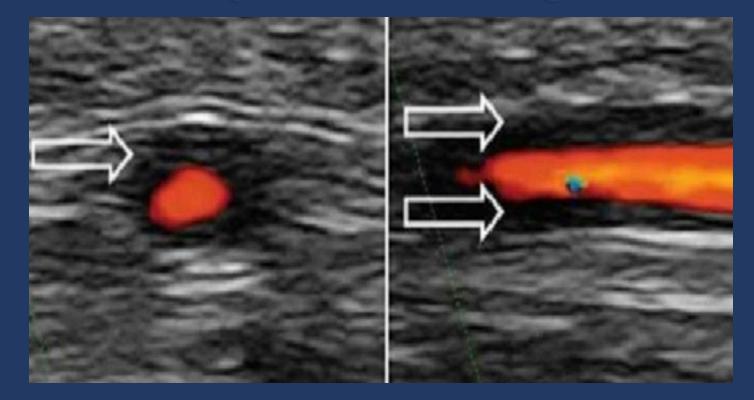
•Sonographic evaluation at the time of initial dysfunction may reveal an underlying correctable abnormality, and specific therapy may be instituted before the condition progresses.


• Sonography may obviate an invasive angiographic examination if no significant hemodynamic problem is present.


Finlay, et al Radiography 1993

Temporal arteritis

The utility of color duplex ultrasonography in the diagnosis of temporal arteritis


Christopher J LeSar ¹, George H Meier, Richard J DeMasi, Jaideep Sood, Courtney R Nelms, Kathleen A Carter, Robert G Gayle, F Noel Parent, Michael J Marcinczyk

"... When CDU examined for halo alone as the determinate for disease, the sensitivity, specificity, PPV and NPV, compared to histologic confirmation of TA, were 85.7%, 92.0%, 75.0%, and 95.8%, respectively."

Temporal arteritis 'Halo sign'

Sonographers Are in Pain

90%

of sonographers experience symptoms of Work-Related Musculoskeletal Disorders (WRMSDs)¹

20% of those symptomatic suffer career-ending injuries¹

\$771,500

Direct and indirect cost to employer per injured sonographer²

39%

Sonographers report patient obesity as the most significant barrier to practicing ergonomic scanning techniques³

The impact of the development of a program to reduce urgent (off-hours) venous duplex ultrasound scan studies

Eugene M. Langan III, MD, Cindy B. Coffey, RVT, Spence M. Taylor, MD, Bruce A. Snyder, MD, Timothy M. Sullivan, MD, David L. Cull, MD, Jerry R. Youkey, MD, and Bruce H. Gray, DO, *Greenville*, SC

• *Conclusion:* The development of the LMWH program has reduced after-hours VDUs by 89% without causing patient morbidity or mortality. Retention of RVTs has been 100% since program implementation.

J Vasc Surg 2002;36:132-6

PVL is a service line

Conclusions

Non-invasive arterial imaging of the extremities is:

- 1. Cost effective.
- 2. Low risk
- 3. Provides functional assessment in addition to high quality imaging.
- 4. Has few technical limitations
- 5. Patient and Technician dependent

